table of contents
OCAMLC(1) | General Commands Manual | OCAMLC(1) |
NAME¶
ocamlc - The Objective Caml bytecode compiler
SYNOPSIS¶
ocamlc [ options ] filename ...
ocamlc.opt [ options ] filename ...
DESCRIPTION¶
The Objective Caml bytecode compiler ocamlc(1) compiles Caml source files to bytecode object files and links these object files to produce standalone bytecode executable files. These executable files are then run by the bytecode interpreter ocamlrun(1).
The ocamlc(1) command has a command-line interface similar to the one of most C compilers. It accepts several types of arguments and processes them sequentially:
Arguments ending in .mli are taken to be source files for compilation unit interfaces. Interfaces specify the names exported by compilation units: they declare value names with their types, define public data types, declare abstract data types, and so on. From the file x.mli, the ocamlc(1) compiler produces a compiled interface in the file x.cmi.
Arguments ending in .ml are taken to be source files for compilation unit implementations. Implementations provide definitions for the names exported by the unit, and also contain expressions to be evaluated for their side-effects. From the file x.ml, the ocamlc(1) compiler produces compiled object bytecode in the file x.cmo.
If the interface file x.mli exists, the implementation x.ml is checked against the corresponding compiled interface x.cmi, which is assumed to exist. If no interface x.mli is provided, the compilation of x.ml produces a compiled interface file x.cmi in addition to the compiled object code file x.cmo. The file x.cmi produced corresponds to an interface that exports everything that is defined in the implementation x.ml.
Arguments ending in .cmo are taken to be compiled object bytecode. These files are linked together, along with the object files obtained by compiling .ml arguments (if any), and the Caml Light standard library, to produce a standalone executable program. The order in which .cmo and.ml arguments are presented on the command line is relevant: compilation units are initialized in that order at run-time, and it is a link-time error to use a component of a unit before having initialized it. Hence, a given x.cmo file must come before all .cmo files that refer to the unit x.
Arguments ending in .cma are taken to be libraries of object bytecode. A library of object bytecode packs in a single file a set of object bytecode files (.cmo files). Libraries are built with ocamlc -a (see the description of the -a option below). The object files contained in the library are linked as regular .cmo files (see above), in the order specified when the .cma file was built. The only difference is that if an object file contained in a library is not referenced anywhere in the program, then it is not linked in.
Arguments ending in .c are passed to the C compiler, which generates a .o object file. This object file is linked with the program if the -custom flag is set (see the description of -custom below).
Arguments ending in .o or .a are assumed to be C object files and libraries. They are passed to the C linker when linking in -custom mode (see the description of -custom below).
Arguments ending in .so are assumed to be C shared libraries (DLLs). During linking, they are searched for external C functions referenced from the Caml code, and their names are written in the generated bytecode executable. The run-time system ocamlrun(1) then loads them dynamically at program start-up time.
The output of the linking phase is a file containing compiled bytecode that can be executed by the Objective Caml bytecode interpreter: the command ocamlrun(1). If caml.out is the name of the file produced by the linking phase, the command ocamlrun caml.out arg1 arg2 ... argn executes the compiled code contained in caml.out, passing it as arguments the character strings arg1 to argn. (See ocamlrun(1) for more details.)
On most systems, the file produced by the linking phase can be run directly, as in: ./caml.out arg1 arg2 ... argn. The produced file has the executable bit set, and it manages to launch the bytecode interpreter by itself.
ocamlc.opt is the same compiler as ocamlc, but compiled with the native-code compiler ocamlopt(1). Thus, it behaves exactly like ocamlc, but compiles faster. ocamlc.opt may not be available in all installations of Objective Caml.
OPTIONS¶
The following command-line options are recognized by ocamlc(1).
- -a
- Build a library (.cma file) with the object files (.cmo files) given on the command line, instead of linking them into an executable file. The name of the library must be set with the -o option.
- If -custom, -cclib or -ccopt options are passed on the command line, these options are stored in the resulting .cma library. Then, linking with this library automatically adds back the -custom, -cclib and -ccopt options as if they had been provided on the command line, unless the -noautolink option is given.
- -annot
- Dump detailed information about the compilation (types, bindings, tail-calls, etc). The information for file src.ml is put into file src.annot. In case of a type error, dump all the information inferred by the type-checker before the error. The src.annot file can be used with the emacs commands given in emacs/caml-types.el to display types and other annotations interactively.
- -c
- Compile only. Suppress the linking phase of the compilation. Source code files are turned into compiled files, but no executable file is produced. This option is useful to compile modules separately.
- -cc ccomp
- Use ccomp as the C linker when linking in "custom runtime" mode (see the -custom option) and as the C compiler for compiling .c source files.
- -cclib -llibname
- Pass the -llibname option to the C linker when linking in "custom runtime" mode (see the -custom option). This causes the given C library to be linked with the program.
- -ccopt
- Pass the given option to the C compiler and linker, when linking in "custom runtime" mode (see the -custom option). For instance, -ccopt -Ldir causes the C linker to search for C libraries in directory dir.
- -config
- Print the version number of ocamlc(1) and a detailed summary of its configuration, then exit.
- -custom
- Link in "custom runtime" mode. In the default linking mode, the
linker produces bytecode that is intended to be executed with the shared
runtime system, ocamlrun(1). In the custom runtime mode, the linker
produces an output file that contains both the runtime system and the
bytecode for the program. The resulting file is larger, but it can be
executed directly, even if the ocamlrun(1) command is not
installed. Moreover, the "custom runtime" mode enables linking
Caml code with user-defined C functions.
Never use the strip(1) command on executables produced by ocamlc -custom, this would remove the bytecode part of the executable.
- -dllib -llibname
- Arrange for the C shared library dlllibname.so to be loaded dynamically by the run-time system ocamlrun(1) at program start-up time.
- -dllpath dir
- Adds the directory dir to the run-time search path for shared C libraries. At link-time, shared libraries are searched in the standard search path (the one corresponding to the -I option). The -dllpath option simply stores dir in the produced executable file, where ocamlrun(1) can find it and use it.
- -g
- Add debugging information while compiling and linking. This option is required in order to be able to debug the program with ocamldebug(1) and to produce stack backtraces when the program terminates on an uncaught exception.
- -i
- Cause the compiler to print all defined names (with their inferred types or their definitions) when compiling an implementation (.ml file). No compiled files (.cmo and .cmi files) are produced. This can be useful to check the types inferred by the compiler. Also, since the output follows the syntax of interfaces, it can help in writing an explicit interface (.mli file) for a file: just redirect the standard output of the compiler to a .mli file, and edit that file to remove all declarations of unexported names.
- -I directory
- Add the given directory to the list of directories searched for compiled
interface files (.cmi), compiled object code files (.cmo), libraries
(.cma), and C libraries specified with -cclib -l xxx.
By default, the current directory is searched first, then the standard
library directory. Directories added with -I are searched after the
current directory, in the order in which they were given on the command
line, but before the standard library directory.
If the given directory starts with +, it is taken relative to the standard library directory. For instance, -I +labltk adds the subdirectory labltk of the standard library to the search path.
- -impl filename
- Compile the file filename as an implementation file, even if its extension is not .ml.
- -intf filename
- Compile the file filename as an interface file, even if its extension is not .mli.
- -intf-suffix string
- Recognize file names ending with string as interface files (instead of the default .mli).
- -labels
- Labels are not ignored in types, labels may be used in applications, and labelled parameters can be given in any order. This is the default.
- -linkall
- Force all modules contained in libraries to be linked in. If this flag is not given, unreferenced modules are not linked in. When building a library (option -a), setting the -linkall option forces all subsequent links of programs involving that library to link all the modules contained in the library.
- -make-runtime
- Build a custom runtime system (in the file specified by option -o) incorporating the C object files and libraries given on the command line. This custom runtime system can be used later to execute bytecode executables produced with the option ocamlc -use-runtime runtime-name.
- -noassert
- Do not compile assertion checks. Note that the special form assert false is always compiled because it is typed specially. This flag has no effect when linking already-compiled files.
- -noautolink
- When linking .cma libraries, ignore -custom, -cclib and -ccopt options potentially contained in the libraries (if these options were given when building the libraries). This can be useful if a library contains incorrect specifications of C libraries or C options; in this case, during linking, set -noautolink and pass the correct C libraries and options on the command line.
- -nolabels
- Ignore non-optional labels in types. Labels cannot be used in applications, and parameter order becomes strict.
- -o exec-file
- Specify the name of the output file produced by the linker. The default output name is a.out, in keeping with the Unix tradition. If the -a option is given, specify the name of the library produced. If the -pack option is given, specify the name of the packed object file produced. If the -output-obj option is given, specify the name of the output file produced.
- -output-obj
- Cause the linker to produce a C object file instead of a bytecode executable file. This is useful to wrap Caml code as a C library, callable from any C program. The name of the output object file is camlprog.o by default; it can be set with the -o option. This option can also be used to produce a C source file (.c extension) or a compiled shared/dynamic library (.so extension).
- -pack
- Build a bytecode object file (.cmo file) and its associated compiled interface (.cmi) that combines the object files given on the command line, making them appear as sub-modules of the output .cmo file. The name of the output .cmo file must be given with the -o option. For instance, ocamlc -pack -o p.cmo a.cmo b.cmo c.cmo generates compiled files p.cmo and p.cmi describing a compilation unit having three sub-modules A, B and C, corresponding to the contents of the object files a.cmo, b.cmo and c.cmo. These contents can be referenced as P.A, P.B and P.C in the remainder of the program.
- -pp command
- Cause the compiler to call the given command as a preprocessor for each source file. The output of command is redirected to an intermediate file, which is compiled. If there are no compilation errors, the intermediate file is deleted afterwards. The name of this file is built from the basename of the source file with the extension .ppi for an interface (.mli) file and .ppo for an implementation (.ml) file.
- -principal
- Check information path during type-checking, to make sure that all types are derived in a principal way. When using labelled arguments and/or polymorphic methods, this flag is required to ensure future versions of the compiler will be able to infer types correctly, even if internal algorithms change. All programs accepted in -principal mode are also accepted in the default mode with equivalent types, but different binary signatures, and this may slow down type checking; yet it is a good idea to use it once before publishing source code.
- -rectypes
- Allow arbitrary recursive types during type-checking. By default, only recursive types where the recursion goes through an object type are supported. Note that once you have created an interface using this flag, you must use it again for all dependencies.
- -thread
- Compile or link multithreaded programs, in combination with the system "threads" library described in The Objective Caml user's manual.
- -unsafe
- Turn bound checking off for array and string accesses (the v.(i)ands.[i] constructs). Programs compiled with -unsafe are therefore slightly faster, but unsafe: anything can happen if the program accesses an array or string outside of its bounds.
- -use-runtime runtime-name
- Generate a bytecode executable file that can be executed on the custom runtime system runtime-name, built earlier with ocamlc -make-runtime runtime-name.
- -v
- Print the version number of the compiler and the location of the standard library directory, then exit.
- -verbose
- Print all external commands before they are executed, in particular invocations of the C compiler and linker in -custom mode. Useful to debug C library problems.
- -version
- Print the version number of the compiler in short form (e.g. "3.11.0"), then exit.
- -vmthread
- Compile or link multithreaded programs, in combination with the VM-level threads library described in The Objective Caml user's manual.
- -w warning-list
- Enable or disable warnings according to the argument warning-list.
The argument is a set of letters. If a letter is uppercase, it enables the
corresponding warnings; lowercase disables the warnings. The
correspondence is the following:
A all warnings
C start of comments that look like mistakes
D use of deprecated features
E fragile pattern matchings (matchings that will remain complete even if additional constructors are added to one of the variant types matched)
F partially applied functions (expressions whose result has function type and is ignored)
L omission of labels in applications
M overriding of methods
P missing cases in pattern matchings (i.e. partial matchings)
S expressions in the left-hand side of a sequence that don't have type unit (and that are not functions, see F above)
U redundant cases in pattern matching (unused cases)
V overriding of instance variables
Y unused variables that are bound with let or as, and don't start with an underscore (_) character
Z all other cases of unused variables that don't start with an underscore (_) character
X warnings that don't fit in the above categories (except A)
- The default setting is -w Aelz, enabling all warnings except fragile pattern matchings, omitted labels, and innocuous unused variables. Note that warnings F and S are not always triggered, depending on the internals of the type checker.
- -warn-error warning-list
- Turn the warnings indicated in the argument warning-list into errors. The compiler will stop with an error when one of these warnings is emitted. The warning-list has the same meaning as for the "-w" option: an uppercase character turns the corresponding warning into an error, a lowercase character leaves it as a warning. The default setting is -warn-error a (none of the warnings is treated as an error).
- -where
- Print the location of the standard library, then exit.
- - file
- Process file as a file name, even if it starts with a dash (-) character.
- -help or --help
- Display a short usage summary and exit.
SEE ALSO¶
ocamlopt(1), ocamlrun(1), ocaml(1).
The Objective Caml user's manual, chapter "Batch
compilation".